/* GLIB - Library of useful routines for C programming * Copyright (C) 1995-1997 Peter Mattis, Spencer Kimball and Josh MacDonald * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ /* * Modified by the GLib Team and others 1997-1999. See the AUTHORS * file for a list of people on the GLib Team. See the ChangeLog * files for a list of changes. These files are distributed with * GLib at ftp://ftp.gtk.org/pub/gtk/. */ #include #include #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "glib.h" #define MEM_PROFILE_TABLE_SIZE 8192 #define ENTER_MEM_CHUNK_ROUTINE() #define LEAVE_MEM_CHUNK_ROUTINE() #define MEM_AREA_SIZE 4L #if SIZEOF_VOID_P > SIZEOF_LONG #define MEM_ALIGN sizeof(gpointer) #else #define MEM_ALIGN sizeof(long) #endif typedef struct _GFreeAtom GFreeAtom; typedef struct _GMemArea GMemArea; typedef struct _GRealMemChunk GRealMemChunk; struct _GFreeAtom { GFreeAtom *next; }; struct _GMemArea { GMemArea *next; /* the next mem area */ GMemArea *prev; /* the previous mem area */ gulong index; /* the current index into the "mem" array */ gulong free; /* the number of free bytes in this mem area */ gulong allocated; /* the number of atoms allocated from this area */ gulong mark; /* is this mem area marked for deletion */ gchar mem[MEM_AREA_SIZE]; /* the mem array from which atoms get allocated * the actual size of this array is determined by * the mem chunk "area_size". ANSI says that it * must be declared to be the maximum size it * can possibly be (even though the actual size * may be less). */ }; struct _GRealMemChunk { gchar *name; /* name of this MemChunk...used for debugging output */ gint type; /* the type of MemChunk: ALLOC_ONLY or ALLOC_AND_FREE */ gint num_mem_areas; /* the number of memory areas */ gint num_marked_areas; /* the number of areas marked for deletion */ guint atom_size; /* the size of an atom */ gulong area_size; /* the size of a memory area */ GMemArea *mem_area; /* the current memory area */ GMemArea *mem_areas; /* a list of all the mem areas owned by this chunk */ GMemArea *free_mem_area; /* the free area...which is about to be destroyed */ GFreeAtom *free_atoms; /* the free atoms list */ GTree *mem_tree; /* tree of mem areas sorted by memory address */ GRealMemChunk *next; /* pointer to the next chunk */ GRealMemChunk *prev; /* pointer to the previous chunk */ }; static gulong g_mem_chunk_compute_size (gulong size, gulong min_size); static gint g_mem_chunk_area_compare (GMemArea *a, GMemArea *b); static gint g_mem_chunk_area_search (GMemArea *a, gchar *addr); static GRealMemChunk *mem_chunks = NULL; gpointer g_malloc (gulong size) { gpointer p; if (size == 0) return NULL; p = (gpointer) malloc (size); if (!p) g_error ("could not allocate %ld bytes", size); return p; } gpointer g_malloc0 (gulong size) { gpointer p; if (size == 0) return NULL; p = (gpointer) calloc (size, 1); if (!p) g_error ("could not allocate %ld bytes", size); return p; } gpointer g_realloc (gpointer mem, gulong size) { gpointer p; if (size == 0) { g_free (mem); return NULL; } if (!mem) { #ifdef REALLOC_0_WORKS p = (gpointer) realloc (NULL, size); #else /* !REALLOC_0_WORKS */ p = (gpointer) malloc (size); #endif /* !REALLOC_0_WORKS */ } else { p = (gpointer) realloc (mem, size); } if (!p) g_error ("could not reallocate %lu bytes", (gulong) size); return p; } void g_free (gpointer mem) { if (mem) { free (mem); } } void g_mem_profile (void) { } void g_mem_check (gpointer mem) { } GMemChunk* g_mem_chunk_new (gchar *name, gint atom_size, gulong area_size, gint type) { GRealMemChunk *mem_chunk; gulong rarea_size; g_return_val_if_fail (atom_size > 0, NULL); g_return_val_if_fail (area_size >= (gulong)atom_size, NULL); ENTER_MEM_CHUNK_ROUTINE(); area_size = (area_size + atom_size - 1) / atom_size; area_size *= atom_size; mem_chunk = g_new (struct _GRealMemChunk, 1); mem_chunk->name = name; mem_chunk->type = type; mem_chunk->num_mem_areas = 0; mem_chunk->num_marked_areas = 0; mem_chunk->mem_area = NULL; mem_chunk->free_mem_area = NULL; mem_chunk->free_atoms = NULL; mem_chunk->mem_tree = NULL; mem_chunk->mem_areas = NULL; mem_chunk->atom_size = atom_size; if (mem_chunk->type == G_ALLOC_AND_FREE) mem_chunk->mem_tree = g_tree_new ((GCompareFunc) g_mem_chunk_area_compare); if (mem_chunk->atom_size % MEM_ALIGN) mem_chunk->atom_size += MEM_ALIGN - (mem_chunk->atom_size % MEM_ALIGN); rarea_size = area_size + sizeof (GMemArea) - MEM_AREA_SIZE; rarea_size = g_mem_chunk_compute_size (rarea_size, atom_size + sizeof (GMemArea) - MEM_AREA_SIZE); mem_chunk->area_size = rarea_size - (sizeof (GMemArea) - MEM_AREA_SIZE); mem_chunk->next = mem_chunks; mem_chunk->prev = NULL; if (mem_chunks) mem_chunks->prev = mem_chunk; mem_chunks = mem_chunk; LEAVE_MEM_CHUNK_ROUTINE(); return ((GMemChunk*) mem_chunk); } void g_mem_chunk_destroy (GMemChunk *mem_chunk) { GRealMemChunk *rmem_chunk; GMemArea *mem_areas; GMemArea *temp_area; g_return_if_fail (mem_chunk != NULL); ENTER_MEM_CHUNK_ROUTINE(); rmem_chunk = (GRealMemChunk*) mem_chunk; mem_areas = rmem_chunk->mem_areas; while (mem_areas) { temp_area = mem_areas; mem_areas = mem_areas->next; g_free (temp_area); } if (rmem_chunk->next) rmem_chunk->next->prev = rmem_chunk->prev; if (rmem_chunk->prev) rmem_chunk->prev->next = rmem_chunk->next; if (rmem_chunk == mem_chunks) mem_chunks = mem_chunks->next; if (rmem_chunk->type == G_ALLOC_AND_FREE) g_tree_destroy (rmem_chunk->mem_tree); g_free (rmem_chunk); LEAVE_MEM_CHUNK_ROUTINE(); } gpointer g_mem_chunk_alloc (GMemChunk *mem_chunk) { GRealMemChunk *rmem_chunk; GMemArea *temp_area; gpointer mem; ENTER_MEM_CHUNK_ROUTINE(); g_return_val_if_fail (mem_chunk != NULL, NULL); rmem_chunk = (GRealMemChunk*) mem_chunk; while (rmem_chunk->free_atoms) { /* Get the first piece of memory on the "free_atoms" list. * We can go ahead and destroy the list node we used to keep * track of it with and to update the "free_atoms" list to * point to its next element. */ mem = rmem_chunk->free_atoms; rmem_chunk->free_atoms = rmem_chunk->free_atoms->next; /* Determine which area this piece of memory is allocated from */ temp_area = g_tree_search (rmem_chunk->mem_tree, (GSearchFunc) g_mem_chunk_area_search, mem); /* If the area has been marked, then it is being destroyed. * (ie marked to be destroyed). * We check to see if all of the segments on the free list that * reference this area have been removed. This occurs when * the ammount of free memory is less than the allocatable size. * If the chunk should be freed, then we place it in the "free_mem_area". * This is so we make sure not to free the mem area here and then * allocate it again a few lines down. * If we don't allocate a chunk a few lines down then the "free_mem_area" * will be freed. * If there is already a "free_mem_area" then we'll just free this mem area. */ if (temp_area->mark) { /* Update the "free" memory available in that area */ temp_area->free += rmem_chunk->atom_size; if (temp_area->free == rmem_chunk->area_size) { if (temp_area == rmem_chunk->mem_area) rmem_chunk->mem_area = NULL; if (rmem_chunk->free_mem_area) { rmem_chunk->num_mem_areas -= 1; if (temp_area->next) temp_area->next->prev = temp_area->prev; if (temp_area->prev) temp_area->prev->next = temp_area->next; if (temp_area == rmem_chunk->mem_areas) rmem_chunk->mem_areas = rmem_chunk->mem_areas->next; if (rmem_chunk->type == G_ALLOC_AND_FREE) g_tree_remove (rmem_chunk->mem_tree, temp_area); g_free (temp_area); } else rmem_chunk->free_mem_area = temp_area; rmem_chunk->num_marked_areas -= 1; } } else { /* Update the number of allocated atoms count. */ temp_area->allocated += 1; /* The area wasn't marked...return the memory */ goto outa_here; } } /* If there isn't a current mem area or the current mem area is out of space * then allocate a new mem area. We'll first check and see if we can use * the "free_mem_area". Otherwise we'll just malloc the mem area. */ if ((!rmem_chunk->mem_area) || ((rmem_chunk->mem_area->index + rmem_chunk->atom_size) > rmem_chunk->area_size)) { if (rmem_chunk->free_mem_area) { rmem_chunk->mem_area = rmem_chunk->free_mem_area; rmem_chunk->free_mem_area = NULL; } else { rmem_chunk->mem_area = (GMemArea*) g_malloc (sizeof (GMemArea) - MEM_AREA_SIZE + rmem_chunk->area_size); rmem_chunk->num_mem_areas += 1; rmem_chunk->mem_area->next = rmem_chunk->mem_areas; rmem_chunk->mem_area->prev = NULL; if (rmem_chunk->mem_areas) rmem_chunk->mem_areas->prev = rmem_chunk->mem_area; rmem_chunk->mem_areas = rmem_chunk->mem_area; if (rmem_chunk->type == G_ALLOC_AND_FREE) g_tree_insert (rmem_chunk->mem_tree, rmem_chunk->mem_area, rmem_chunk->mem_area); } rmem_chunk->mem_area->index = 0; rmem_chunk->mem_area->free = rmem_chunk->area_size; rmem_chunk->mem_area->allocated = 0; rmem_chunk->mem_area->mark = 0; } /* Get the memory and modify the state variables appropriately. */ mem = (gpointer) &rmem_chunk->mem_area->mem[rmem_chunk->mem_area->index]; rmem_chunk->mem_area->index += rmem_chunk->atom_size; rmem_chunk->mem_area->free -= rmem_chunk->atom_size; rmem_chunk->mem_area->allocated += 1; outa_here: LEAVE_MEM_CHUNK_ROUTINE(); return mem; } gpointer g_mem_chunk_alloc0 (GMemChunk *mem_chunk) { gpointer mem; mem = g_mem_chunk_alloc (mem_chunk); if (mem) { GRealMemChunk *rmem_chunk = (GRealMemChunk*) mem_chunk; memset (mem, 0, rmem_chunk->atom_size); } return mem; } void g_mem_chunk_free (GMemChunk *mem_chunk, gpointer mem) { GRealMemChunk *rmem_chunk; GMemArea *temp_area; GFreeAtom *free_atom; g_return_if_fail (mem_chunk != NULL); g_return_if_fail (mem != NULL); ENTER_MEM_CHUNK_ROUTINE(); rmem_chunk = (GRealMemChunk*) mem_chunk; /* Don't do anything if this is an ALLOC_ONLY chunk */ if (rmem_chunk->type == G_ALLOC_AND_FREE) { /* Place the memory on the "free_atoms" list */ free_atom = (GFreeAtom*) mem; free_atom->next = rmem_chunk->free_atoms; rmem_chunk->free_atoms = free_atom; temp_area = g_tree_search (rmem_chunk->mem_tree, (GSearchFunc) g_mem_chunk_area_search, mem); temp_area->allocated -= 1; if (temp_area->allocated == 0) { temp_area->mark = 1; rmem_chunk->num_marked_areas += 1; } } LEAVE_MEM_CHUNK_ROUTINE(); } /* This doesn't free the free_area if there is one */ void g_mem_chunk_clean (GMemChunk *mem_chunk) { GRealMemChunk *rmem_chunk; GMemArea *mem_area; GFreeAtom *prev_free_atom; GFreeAtom *temp_free_atom; gpointer mem; g_return_if_fail (mem_chunk != NULL); rmem_chunk = (GRealMemChunk*) mem_chunk; if (rmem_chunk->type == G_ALLOC_AND_FREE) { prev_free_atom = NULL; temp_free_atom = rmem_chunk->free_atoms; while (temp_free_atom) { mem = (gpointer) temp_free_atom; mem_area = g_tree_search (rmem_chunk->mem_tree, (GSearchFunc) g_mem_chunk_area_search, mem); /* If this mem area is marked for destruction then delete the * area and list node and decrement the free mem. */ if (mem_area->mark) { if (prev_free_atom) prev_free_atom->next = temp_free_atom->next; else rmem_chunk->free_atoms = temp_free_atom->next; temp_free_atom = temp_free_atom->next; mem_area->free += rmem_chunk->atom_size; if (mem_area->free == rmem_chunk->area_size) { rmem_chunk->num_mem_areas -= 1; rmem_chunk->num_marked_areas -= 1; if (mem_area->next) mem_area->next->prev = mem_area->prev; if (mem_area->prev) mem_area->prev->next = mem_area->next; if (mem_area == rmem_chunk->mem_areas) rmem_chunk->mem_areas = rmem_chunk->mem_areas->next; if (mem_area == rmem_chunk->mem_area) rmem_chunk->mem_area = NULL; if (rmem_chunk->type == G_ALLOC_AND_FREE) g_tree_remove (rmem_chunk->mem_tree, mem_area); g_free (mem_area); } } else { prev_free_atom = temp_free_atom; temp_free_atom = temp_free_atom->next; } } } } void g_mem_chunk_reset (GMemChunk *mem_chunk) { GRealMemChunk *rmem_chunk; GMemArea *mem_areas; GMemArea *temp_area; g_return_if_fail (mem_chunk != NULL); rmem_chunk = (GRealMemChunk*) mem_chunk; mem_areas = rmem_chunk->mem_areas; rmem_chunk->num_mem_areas = 0; rmem_chunk->mem_areas = NULL; rmem_chunk->mem_area = NULL; while (mem_areas) { temp_area = mem_areas; mem_areas = mem_areas->next; g_free (temp_area); } rmem_chunk->free_atoms = NULL; if (rmem_chunk->mem_tree) g_tree_destroy (rmem_chunk->mem_tree); rmem_chunk->mem_tree = g_tree_new ((GCompareFunc) g_mem_chunk_area_compare); } void g_mem_chunk_print (GMemChunk *mem_chunk) { GRealMemChunk *rmem_chunk; GMemArea *mem_areas; gulong mem; g_return_if_fail (mem_chunk != NULL); rmem_chunk = (GRealMemChunk*) mem_chunk; mem_areas = rmem_chunk->mem_areas; mem = 0; while (mem_areas) { mem += rmem_chunk->area_size - mem_areas->free; mem_areas = mem_areas->next; } g_print ("%s: %ld bytes using %d mem areas", rmem_chunk->name, mem, rmem_chunk->num_mem_areas); } void g_mem_chunk_info (void) { GRealMemChunk *mem_chunk; gint count; count = 0; mem_chunk = mem_chunks; while (mem_chunk) { count += 1; mem_chunk = mem_chunk->next; } g_print ("%d mem chunks", count); mem_chunk = mem_chunks; while (mem_chunk) { g_mem_chunk_print ((GMemChunk*) mem_chunk); mem_chunk = mem_chunk->next; } } void g_blow_chunks (void) { GRealMemChunk *mem_chunk; mem_chunk = mem_chunks; while (mem_chunk) { g_mem_chunk_clean ((GMemChunk*) mem_chunk); mem_chunk = mem_chunk->next; } } static gulong g_mem_chunk_compute_size (gulong size, gulong min_size) { gulong power_of_2; gulong lower, upper; power_of_2 = 16; while (power_of_2 < size) power_of_2 <<= 1; lower = power_of_2 >> 1; upper = power_of_2; if (size - lower < upper - size && lower >= min_size) return lower; else return upper; } static gint g_mem_chunk_area_compare (GMemArea *a, GMemArea *b) { return (a->mem - b->mem); } static gint g_mem_chunk_area_search (GMemArea *a, gchar *addr) { if (a->mem <= addr) { if (addr < &a->mem[a->index]) return 0; return 1; } return -1; } /* generic allocators */ struct _GAllocator /* from gmem.c */ { gchar *name; guint16 n_preallocs; guint is_unused : 1; guint type : 4; GAllocator *last; GMemChunk *mem_chunk; gpointer dummy; /* implementation specific */ }; GAllocator* g_allocator_new (const gchar *name, guint n_preallocs) { GAllocator *allocator; g_return_val_if_fail (name != NULL, NULL); allocator = g_new0 (GAllocator, 1); allocator->name = g_strdup (name); allocator->n_preallocs = CLAMP (n_preallocs, 1, 65535); allocator->is_unused = TRUE; allocator->type = 0; allocator->last = NULL; allocator->mem_chunk = NULL; allocator->dummy = NULL; return allocator; } void g_allocator_free (GAllocator *allocator) { g_return_if_fail (allocator != NULL); g_return_if_fail (allocator->is_unused == TRUE); g_free (allocator->name); if (allocator->mem_chunk) g_mem_chunk_destroy (allocator->mem_chunk); g_free (allocator); } void g_mem_init (void) { }